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Abstract

Metabolic dysfunction-associated steatotic liver disease (MA-
SLD), formerly known as non-alcoholic fatty liver disease, 
has a high global prevalence and can progress to metabolic 
dysfunction-associated steatohepatitis, cirrhosis, and hepa-
tocellular carcinoma. The pathogenesis of MASLD is primarily 
driven by disturbances in hepatic lipid metabolism, involving 
six key processes: increased hepatic fatty acid uptake, en-
hanced fatty acid synthesis, reduced oxidative degradation 
of fatty acids, increased cholesterol uptake, elevated cho-
lesterol synthesis, and increased bile acid synthesis. Conse-
quently, maintaining hepatic lipid metabolic homeostasis is 
essential for effective MASLD management. Numerous novel 
molecules and Chinese proprietary medicines have demon-
strated promising therapeutic potential in treating MASLD, 
primarily by inhibiting lipid synthesis and promoting lipid 
oxidation. In this review, we summarized recent research on 
MASLD, elucidated the molecular mechanisms by which li-
pid metabolism disorders contribute to MASLD pathogenesis, 
and discussed various lipid metabolism-targeted therapeutic 
approaches for MASLD.
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Introduction
Metabolic dysfunction-associated steatotic liver disease (MA-
SLD) is a clinicopathological syndrome characterized by ex-
cessive fat deposition in hepatocytes that is not attributable 
to alcohol or other known liver-damaging factors. In 2023, 
non-alcoholic fatty liver disease was renamed MASLD follow-
ing a Delphi consensus process. This renaming emphasizes 
the importance of metabolism in the disease and provides a 

more precise description. Consequently, we use the term MA-
SLD instead of non-alcoholic fatty liver disease. MASLD is an 
acquired metabolic stress-associated liver injury closely re-
lated to insulin resistance and genetic susceptibility. It is one 
of the most common chronic diseases globally and a signifi-
cant cause of liver injury in adults. The global prevalence of 
MASLD is approximately 29.8%.1 According to the National 
Health and Nutrition Examination Survey III, the prevalence 
of MASLD in the United States is 18.8%, rising to 28% in the 
overweight population.2 By 2018, the prevalence of MASLD 
in China had reached 32.9%, with the total population of MA-
SLD in China expected to increase to 314.58 million people 
by 2030.3

The development of MASLD is closely linked to genetic 
alterations and environmental influences. The risk factors 
can be divided into genetic, epigenetic, and environmental 
factors.4 Genetic factors include mutations in genes such as 
I148M PNPLA3, TM6SF2, MBOAT7, and GCKR, which increase 
susceptibility to MASLD.5 Epigenetic factors include DNA 
methylation, chromatin remodeling, and non-coding RNAs. 
For instance, the M6A “writer” protein methyltransferase-
like 3 ameliorates MASLD via RNA methylation.6 Additionally, 
replication protein A1 can maintain lipid metabolism homeo-
stasis and thus ameliorate MASLD by regulating chromatin 
structure.7 Many non-coding RNAs involved in the regulation 
of lipid metabolism, such as miR-34a, miR-122, and miR-
21, play a role in the development of MASLD.8 Furthermore, 
environmental factors play a critical role in the progression 
of MASLD. These include dietary habits, exercise status, and 
socioeconomic factors. Unhealthy dietary habits, such as 
high sugar and fat consumption,9 sedentary lifestyles, and 
infrequent exercise,10,11 increase susceptibility to MASLD.

MASLD can be classified as simple steatosis or metabolic 
dysfunction-associated steatohepatitis (MASH). MASH is 
characterized by pathological histological lobular inflamma-
tion and ballooning of hepatocytes attributable to MASLD. 
Prolonged liver injury can lead to cirrhosis and hepatocellu-
lar carcinoma (HCC). A common clinical method to diagnose 
MASLD is the detection of hepatic fat density on MRI.12 Addi-
tionally, plasma cytokeratin 18, a marker of hepatocyte apo-
ptosis, has been widely used to assess MASLD.13 In recent 
years, mutations in the PNPLA3 and TM6SF2 genes have been 
shown to correlate with the severity of MASLD, highlighting 
their potential as new diagnostic markers. Furthermore, au-
tophagy-related markers, oxidative stress-related markers, 
inflammatory factors, and liver fibrosis-related markers can 
also be used to assess the progression of MASLD.

Keywords: MASLD; Lipid metabolism; Cholesterol metabolism; Lipogenesis; 
Lipolysis; lipid metabolism-targeted drugs; Chinese proprietary medicine.
*Correspondence to: Jun Xing and Kaiguang Zhang, Department of Diges-
tive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and 
Medicine, University of Science and Technology of China, 17 Lujiang Road, Luy-
ang District, Hefei, Anhui 230001, China. ORCID: https://orcid.org/0000-0002-
2771-6725 (JX) and https://orcid.org/0000-0001-9462-6335 (KZ). E-mail: 
xingjunjoy@hotmail.com (JX) and zhangkaiguang@ustc.edu.cn (KZ).

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://crossmark.crossref.org/dialog/?doi=10.14218/JCTH.2024.00019&domain=pdf&date_stamp=2024-09-02
https://doi.org/10.14218/JCTH.2024.00019
https://orcid.org/0000-0001-9462-6335
https://orcid.org/0000-0002-2771-6725
https://orcid.org/0000-0002-2771-6725
https://orcid.org/0000-0002-2771-6725
https://orcid.org/0000-0001-9462-6335
mailto:xingjunjoy@hotmail.com
mailto:zhangkaiguang@ustc.edu.cn


Journal of Clinical and Translational Hepatology 2024 vol. 12(9)  |  815–826816

Feng X. et al: Mechanism of NAFLD

Many treatments have been developed for MASLD. First, 
dietary control and appropriate exercise habits can signifi-
cantly alleviate MASLD. Second, glucagon-like peptide-1 
(GLP-1) agonists, sterol-regulatory element binding protein 
(SREBP) inhibitors, acetyl-CoA carboxylase (ACC) inhibitors, 
fatty acid synthase (FASN) inhibitors, stearoyl coenzyme A 
desaturase (SCD) inhibitors, farnesoid X receptor (FXR) ago-
nists, peroxisome proliferator-activated receptor (PPAR) ago-
nists, and certain natural compounds are considered promis-
ing treatments. In recent years, there has been tremendous 
growth in research focused on treating MASLD by modulating 
lipid metabolism, with an increasing number of drugs in clini-
cal development. However, the treatment of MASLD remains 
challenging due to population selection issues and the side 
effects of current drugs. Given the crucial role of lipid me-
tabolism in MASLD, exploring new drugs and targets for lipid 
metabolism modulation has become a popular direction for 
treatment research.

Lipid metabolism
Lipids serve as crucial energy sources in the body, and vari-
ous molecules involved in lipid metabolism play integral roles 
in different cellular functions. The development of MASLD is 
closely related to lipid metabolism, particularly the metabo-
lism of triglycerides and cholesterol. Triglycerides are synthe-
sized from fatty acids. In this review, we primarily focus on 
fatty acid and cholesterol metabolism. The maintenance of 
hepatic lipid metabolic homeostasis involves three aspects: 
uptake, synthesis, and catabolism. It is widely believed that 
an increase in fatty acid uptake and synthesis or a decrease 
in lipid degradation leads to the development of MASLD. 
Therefore, researchers have increasingly focused on these 
aspects, and various viewpoints have been proposed.

Fatty acid metabolism

Fatty acid intake
The hepatic uptake of fatty acids depends on fatty acid trans-
port carriers, including fatty acid transport proteins (FATPs), 
cluster of differentiation 36 (CD36), and hepatic caveolin-1 
(CAV-1).

FATPs: Six FATP isoforms have been identified, with FATP2 
and FATP5 primarily found in the liver.14 These transport pro-
teins play crucial roles in the development of MASLD. Down-
regulation of FATP2 in mice reduces fatty acid uptake and 
ameliorates hepatic steatosis induced by a high-fat diet.15 
Deletion of FATP2 in the mouse liver alters the metabolic 
landscape by increasing the expression of PPARα-regulated 
genes.16 Knockdown of FATP5 leads to reduced hepatic fatty 
acid uptake, which in turn decreases hepatic lipid accumula-
tion.17 However, decreased hepatic FATP5 expression is as-
sociated with the histological progression of MASLD, which 
might be related to the reduction of hepatic lipid content as 
MASH advances to cirrhosis.18 Thus, FATP5 might have a dual 
role in the development of MASLD.

CD36: Experiments have confirmed the involvement of 
CD36 in hepatic fatty acid uptake and lipid accumulation.19 
CD36 palmitoylation is an important factor in the pathogene-
sis of MASLD. In vitro and in vivo studies have demonstrated 
that inhibiting CD36 palmitoylation can ameliorate fatty acid 
metabolism disorders and reduce inflammatory reactions.20 
Inhibition of CD36 palmitoylation also attenuates MASLD by 
promoting CD36 localization to hepatocyte mitochondria.21 
The palmitoyltransferases DHHC4 and DHHC5 promote fatty 
acid uptake by targeting CD36.22 Several upstream factors 

regulating CD36 are also involved in MASLD. Demethyla-
tion of the PPARγ DNA promoter increases CD36 expression, 
leading to excessive lipid accumulation.23 Hepatic Dickkopf-1 
enhances fatty acid uptake through the ERK–PPARγ–CD36 
axis.24 Deletion of methyltransferase-like 3 in hepatocytes in-
creases CD36 expression and hepatic free fatty acid uptake, 
promoting MASH development. Hypoxia-inducible factor 1α 
interacts with the CD36 promoter to increase CD36 expres-
sion and enhance fatty acid uptake.25 Additionally, non-cod-
ing RNAs such as miR-96-5p,26 miR-100,27 miR-26a,28 and 
miR-195/miR466829 regulate CD36 expression and affect the 
development of MASLD.

CAV-1: The role of CAV-1 in the development of MASLD 
remains controversial due to its role in mediating lipid en-
docytosis. Although some studies have detected increased 
CAV-1 expression in the liver tissue of mice with MASLD-fed 
high-fat diets, others have found a significant reduction in 
its expression in mice with MASLD.30 Knockdown of CAV-1 in 
LO2 and AML12 cells resulted in increased steatosis.31 CAV-1 
upregulation has been found to attenuate lipid accumulation 
and promote autophagy in mice with MASLD.32 Interestingly, 
hepatocyte-specific CAV-1 knockdown significantly altered 
the gene profile in the development of MASLD without affect-
ing hepatic steatosis and fibrosis.33

De novo fatty acid synthesis
De novo fatty acid synthesis is a process by which the body 
converts carbon from carbohydrates, such as glucose, and 
amino acids, including glutamine, into fatty acids. The raw 
material for de novo fatty acid synthesis is acetyl-CoA, which 
is derived from two sources. First, acetyl-CoA in mitochon-
dria is condensed with oxaloacetate, catalyzed by citrate 
synthase, to form citric acid, which is then transported to 
the cytosol by tricarboxylic acid transport proteins in the mi-
tochondrial membrane. Citric acid is subsequently modified 
by ATP citrate lyase (ACLY) to regenerate acetyl-CoA, which 
is used for fatty acid synthesis. This process is called the 
citrate shuttle. Second, acetic acid is linked to coenzyme A 
to synthesize acetyl-CoA, providing additional raw material 
for fatty acid synthesis, catalyzed by acetyl-CoA synthetase 
(ACSS). The generated acetyl-CoA is initially converted to 
malonyl coenzyme A by ACC, the key rate-limiting step. 
Malonyl coenzyme A is then converted to palmitic acid via 
FASN. Saturated palmitic acid (FA16:0) can undergo C-chain 
extension and desaturation by SCD to produce other fatty 
acid species. These fatty acids can be used to generate more 
complex lipids. The key enzymes involved in de novo fatty 
acid synthesis play important roles in the development of 
MASLD (Fig. 1).

SREBPs play critical roles in the development of MASLD 
by transcriptionally regulating key genes involved in he-
patic lipid metabolism. SREBPs are divided into SREBP1 and 
SREBP2. SREBP1 has two transcripts, SREBP1a and SREB-
P1c, with SREBP1c being more widely expressed. SREBP1a 
is expressed in the intestinal epithelium, heart, and mac-
rophages, while SREBP2 is primarily expressed in hepatic 
and adipose tissue. SREBPs can form trimers with SREBP 
cleavage-activating protein (SCAP) and INSIG, anchoring the 
protein in the endoplasmic reticulum (ER). The C-terminal 
region of SCAP interacts with the C-terminal structural do-
main of the ER, while the N-terminal region of SCAP contains 
a sterol-sensing domain sensitive to cholesterol levels. When 
cholesterol levels are high, SCAP binds with cholesterol and 
INSIG, resulting in the retention of the entire complex in the 
ER. Conversely, when cholesterol levels decrease, SCAP does 
not interact with INSIG, allowing the SREBP–SCAP complex 
to be internalized into COPII-containing vesicles, which are 
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transported to the Golgi apparatus. Within the Golgi, SREBPs 
are sequentially cleaved by site-1 protease and site-2 pro-
tease, releasing their N-terminal bHLH structural domain into 
the cytoplasm, where it acts as a transcription factor. The 
bHLH structural domain migrates to the nucleus, dimerizes, 
and forms a complex with transcriptional co-activators, ac-
tivating the transcription of genes with SRE motifs. SREBP1 
mainly regulates fatty acid synthesis and LDLR expression, 
while SREBP2 primarily regulates the expression of choles-
terol biosynthetic genes.

ACLY and ACSS: Inhibiting ACLY can reduce hepatic lipid 
accumulation by suppressing de novo fatty acid synthesis. 
Recent research has clarified the involvement of ACLY in MA-
SLD. In steatotic cells, ACLY mRNA is efficiently translated in 
a cap-independent manner, promoting adipogenesis.34 The 
sirtuin 2–ACLY axis is also involved in MASLD progression, 
with sirtuin 2 inhibiting ACLY and lipid accumulation.35 Ad-
ditionally, ACLY is degraded by HMG-CoA reductase degrada-
tion protein via ubiquitination, thereby attenuating MASLD.36 
ACSS is involved in the synthesis of acetyl-CoA, which pro-
motes hepatic steatosis. Silencing ACSS2 can effectively in-
hibit the conversion of fructose to acetyl-CoA and fatty acids 
in mice.37

ACC: ACC, a key enzyme in de novo fatty acid synthesis, 
plays a significant role in MASLD development. Liver-specific 
ACC1 knockdown reduces hepatic lipid accumulation and 
impairs hepatocyte de novo fatty acid synthesis in mice.38 
AMPK activates the phosphorylation of ACC1 (Ser79Ala) and 
ACC2 (Ser212Ala), inhibiting the enzymatic activity of ACC 
and thereby suppressing lipid synthesis. Mutations at these 
sites are associated with increased de novo fatty acid synthe-
sis and steatosis in the liver.39

FASN and SCD: FASN and SCD are markers of lipid syn-
thesis and are both upregulated in MASLD. FASN regulation 
plays an important role in MASLD. Sorting nexin 8 can prevent 
MASLD by promoting FASN degradation, making the sorting 
nexin 8–FASN axis a promising target for MASLD prevention 
and treatment.40 miR-103 can also inhibit hepatic steatosis 
by targeting FASN and SCD1, which can attenuate MASLD.41 
Slug binds to the FSAN promoter, while Slug-associated LSD1 
catalyzes H3K9 demethylation, stimulating FASN expression 
and lipogenesis.42 Furthermore, in MASLD, the levels of mi-
tochondrial pyruvate carrier 1 are positively correlated with 
hepatic lipid deposition, and mitochondrial pyruvate carrier 
1 knockdown affects FASN lactylation at K673, ultimately in-
hibiting FASN activity.43

Fig. 1.  Fatty acid metabolism. Fatty acid uptake by the liver depends on fatty acid transport carriers, including FATP, CD36, and CAV-1. The raw material for de novo 
fatty acid synthesis is acetyl-CoA, which can be obtained via the citrate shuttle pathway or from acetic acid. ACC and FASN catalyze the conversion of acetyl-CoA into 
saturated palmitic acid, which can be further modified into other fatty acids by enzymes such as SCD. De novo fatty acid synthesis is promoted by SREBPs. Conversely, 
the β-oxidation of fatty acids occurs in the mitochondria. Fatty acids are converted into fatty acyl-CoA by ACSL and transported via CPT-1 before being oxidized to 
acetyl-CoA. Fatty acid β-oxidation is promoted by PPARα. FAs, fatty acids; FASN, fatty acid synthase; SREBP, sterol-regulatory element binding protein; FASN, fatty acid 
synthase; ACC, acetyl-CoA carboxylase; ACLY, ATP citrate lyase; ACSS, acetyl-CoA synthetase; ACSL, acyl-CoA synthetase; PPAR, peroxisome proliferator-activated 
receptor; CPT-1, carnitine palmitoyltransferase-1.
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SREBP1: SREBP1c induces the expression of ACC, FASN, 
and SCD, promoting hepatic fatty acid and triglyceride syn-
thesis. Increased SREBP1 expression is observed in patients 
with MASLD, and SREBP1c overexpression in mice increases 
hepatic triglyceride levels.44 However, exercise and strength 
training can reduce hepatic lipid accumulation by down-
regulating SREBP1.45,46 Activated AMPK phosphorylates 
SREBPs, reducing their activity and inhibiting hepatic lipid 
accumulation. VEGFB,47 MD2,48 and protectin DX49 are in-
volved in MASLD development through the AMPK–SREBP1 
pathway. mTOR promotes the maturation and nucleation of 
SREBP1, enhancing lipid synthesis.50 Pancreatic progenitor 
cell differentiation and proliferation factor reduces hepatic 
steatosis by inhibiting mTOR/SPRBP1.51 CD36 promotes de 
novo lipogenesis through INSIG2-dependent SREBP1 hydro-
lytic processing.52 Additionally, non-coding RNAs including 
miR-23a/b-3p,53 miR-33-5p,54 and miR-130b-5p55 regulate 
SREBP1 expression. ZBTB7A,56 ceramide synthase,57 and 
dihydroxytryptamine58 are believed to upregulate SREBP1, 
promoting lipid synthesis. Interestingly, although SREBP1a 
does not contribute to hepatic lipogenesis, its absence in 
hepatocytes or macrophages exacerbates methionine- and 
choline-deficient diet-induced MASLD.59

SREBP2: The high-fat, choline-deficient, amino acid-
defined diet model is a newly established mouse model of 
MASH that activates the SREBP2/SCD2 gene and drives 
liver fibrosis through high-fat feeding.60 The expression of 
SCD, FASN, and SREBP2 is increased in rats fed a Western 
diet.61 Moreover, SREBP2 is regulated by the AMPK signaling 
pathway, and increased expression of SREBP2 alleviates au-
tophagic dysfunction in MASLD.62

Fatty acid β-oxidation
Fatty acid oxidation refers to the process by which fatty acids 
are degraded in the presence of oxygen to release energy 
for various biological processes. The most common pathway 
is the β-oxidation of fatty acids. β-oxidation of long-chain 
fatty acids occurs in the mitochondria, whereas very-long-
chain fatty acids are oxidized in peroxisomes. Mitochondrial 
β-oxidation consists of three steps. First, fatty acids are acti-
vated to fatty acyl-CoA, a reaction catalyzed by acyl-CoA syn-
thetase (ACSL). Second, while the enzyme system catalyzing 
fatty acid β-oxidation is located in the mitochondrial matrix, 
long-chain fatty acyl-CoA requires a carrier, namely carnitine 
palmitoyltransferase-1 (CPT-1), to be transported through 
the inner mitochondrial membrane. Finally, the β-oxidation of 
fatty acyl-CoA in the mitochondrial matrix proceeds through 
a four-step reaction involving dehydrogenation, hydration, 
re-dehydrogenation, and thiolysis, ultimately producing one 
molecule of acetyl-CoA and a new molecule of fatty acyl-CoA 
with two fewer carbons. This cycle repeats several times to 
gradually produce more acetyl-CoA. Peroxisomal β-oxidation 
is similar to mitochondrial β-oxidation, but the first step is 
catalyzed by lipid acyl-CoA oxidase (Fig. 1).

The PPAR system, particularly PPARα, plays an important 
role in the regulation of lipid metabolism. Activated PPARs 
form heterodimers with the retinoid X receptor and bind to 
peroxisome proliferator-responsive elements upstream of 
certain genes to activate enzymes related to lipid metabo-
lism. PPARα has various roles in lipid metabolism, including 
promoting fatty acid β-oxidation and inhibiting MASLD de-
velopment.

ACSL: TANK-binding kinase 1 acts as a scaffolding pro-
tein to localize ACSL1 to mitochondria and promote fatty 
acid oxidation.63 Although ACSL4 is weakly expressed in the 
liver, it is upregulated in patients with MASLD, which contra-
dicts the conventional belief that ACSL4 promotes fatty acid 

β-oxidation and inhibits MASLD.64 This might be attributable 
to ACSL4’s ability to promote inflammation65 and its involve-
ment in ferroptosis.66 Additionally, P115 interacts with ACSL4 
and degrades it. P115 is significantly upregulated in the livers 
of high-fat diet-fed mice, resulting in the downregulation of 
ACSL4 protein.67 ACSL5 knockdown in mice increases energy 
expenditure and insulin sensitivity and delays fat absorption.68

CPT-1: Exercise can lead to CPT-1 downregulation, there-
by reducing the disruption of lipid metabolism in MASLD.69,70

PPARα: Metabolomic and lipidomic screening revealed 
that PPARα plays an important role in the progression of 
MASH to HCC.71 In a mouse model, obese female offspring 
fed a high-fat diet exhibited impaired hepatic PPARα activa-
tion.72 Moreover, PPARα is sex-selective, making male mice 
more susceptible to MASLD.73 Mechanistically, PPARα can re-
duce hepatic steatosis by rebuilding the intestinal barrier and 
regulating the distribution of the intestinal flora.74 Intestinal 
PPARα in mice with MASLD can promote MASH progression 
by regulating fatty acid uptake.75 Several molecules can also 
affect MASLD by influencing PPARα. For example, the anti-
adipogenic factor coenzyme Q10 regulates MASLD by upregu-
lating PPARα and CPT-1.76 Programmed cell death 4,77 obesi-
ty-associated protein,78 and mothers against decapentaplegic 
homolog family member 479 promote hepatocyte lipid deposi-
tion by inhibiting PPARα-mediated fatty acid oxidation.

Cholesterol metabolism

Cholesterol uptake
The uptake of dietary cholesterol by intestinal epithelial cells 
is facilitated by Niemann–Pick type C1-like 1 (NPC1L1). The 
accumulated cholesterol is then esterified by cholesterol 
acyltransferases, also known as sterol O-acyltransferases, 
for hepatic uptake.80

NPC1L1: Expression of the human NPC1L1 gene in the 
mouse liver exacerbates high-fat diet-induced steatosis.81,82

Cholesterol synthesis
Cholesterol synthesis originates from acetyl-CoA through a 
complex process involving nearly 30 enzymatic steps. This 
process can be roughly divided into three stages: synthesis 
of isopentenyl pyrophosphate from acetyl-CoA, synthesis of 
squalene, and conversion of squalene to cholesterol (Fig. 2). 
The key enzymes involved in this process are mammalian 
3-hydroxy-3-methylglutaryl (HMG)-CoA reductase (HMGCR/
HMFR) and squalene monooxygenase (SM/SQLE). HMGCR 
catalyzes the conversion of HMG-CoA to mevalonate in the 
first phase, while squalene is oxidized by SM in the third 
stage to produce 2,3-oxidized squalene, a precursor of cho-
lesterol and sterols.

HMGCR: Dysregulated cholesterol metabolism can exac-
erbate MASLD. The development of MASLD is associated with 
increased HMGCR expression and reduced HMGCR phospho-
rylation.83 A genomic analysis of a high-fat-fed mouse mod-
el of MASLD showed a 2.06-fold upregulation of HMGCR.84 
HMGCR is regulated by Dicer1/miR-29, indicating that the 
Dicer1–miR-29–HMGCR axis is involved in free cholesterol 
accumulation in the livers of mice with MASLD.85

SM/SQLE: SM/SQLE is implicated in the progression of 
MASLD to HCC. It is the most significantly overexpressed 
metabolic gene in patients with MASLD and HCC, and its ex-
pression accelerates the development of HCC induced by a 
high-fat, high-cholesterol diet in mice.86–88 The underlying 
mechanisms include the promotion of MASH and HCC de-
velopment through the induction of cholesterol biosynthesis, 
the SQLE–CA3 axis-mediated lipogenesis,88 and P53-mediat-
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ed transcriptional regulation of SQLE to suppress cholesterol 
synthesis and tumor growth.89

Bile acid synthesis
Bile-acid synthesis is the primary pathway for cholesterol ca-
tabolism, and the key enzyme in this process is cholesterol 
7α-hydroxylase (CYP7A1). Patients with MASLD often exhibit 
disordered bile acid metabolism. Hepatic bile acid synthesis 
is mainly regulated by FXR, and FXR activation inhibits de 
novo bile acid synthesis (Fig. 2).

CYP7A1: Bioinformatic analysis has revealed that CY-
P7A1 is involved in the development of MASLD, MASH, and 
HCC.90,91 In MASLD, CYP7A1 mRNA expression is increased.92 
However, CYP7A1 mRNA levels decline with the progression 
of MASH-associated liver fibrosis.93

FXR: FXR plays a crucial role in the development of MA-
SLD. On one hand, FXR activation promotes the production of 
short heterodimer partner, which downregulates the rate-lim-
iting enzyme CYP7A1, ultimately inhibiting bile acid synthe-
sis. Studies have demonstrated that FXR activation can pre-
vent MASLD by reducing lipid uptake in a bile acid-dependent 
manner.94 On the other hand, FXR activation decreases he-
patic lipid accumulation by inhibiting triglyceride synthesis, 
achieved through the induction of short heterodimer partner 
expression and the downregulation of SREBP1 and FASN.

FXR deficiency in mice results in hepatic steatosis, lipid 
droplet accumulation in hepatocytes, disturbed glucose me-
tabolism, and elevated blood lipid levels.95 FXR functions as 
a nuclear transcription factor that regulates glucose and li-

pid metabolic homeostasis through pyruvate dehydrogenase 
kinase 4.95 Furthermore, FXR sulfation, a post-translational 
modification influenced by endogenous hepatic cystathionine 
γ lyase/hydrogen sulfide, promotes FXR activity, thereby im-
proving MASLD.96 MiR-552-3p ameliorates hepatic lipid me-
tabolism disorders by regulating the transcriptional activity 
of FXR.97

Drugs that treat MASLD by regulating lipid metabo-
lism
The FDA has approved Rezdiffra (resmetirom), a thyroid hor-
mone receptor β-1 agonist, as the first treatment for MASH. 
Resmetirom selectively activates thyroid hormone receptor 
β-1, resulting in a reduction of free thyroxine (T4) levels by 
approximately 16–19%. Notably, it does not influence the 
levels of thyrotropin or free triiodothyronine.98 Resmetirom 
also significantly reduces cholesterol and triglyceride levels 
and enhances fatty acid oxidation, demonstrating substantial 
potential for the treatment of MASLD. Meanwhile, there has 
been increasing interest in developing new drugs for MASLD 
treatment. In this section, we review recent articles exploring 
molecular drugs and Chinese proprietary medicines (CPMs) 
that inhibit MASLD. Most of these drugs/CPMs work by inhib-
iting fatty acid uptake and synthesis while promoting fatty 
acid oxidation. Similarly, the inhibition of cholesterol uptake 
and synthesis, as well as bile acid synthesis, can also be used 
to improve MASLD. CPMs have shown great potential in MA-
SLD treatment. The modification of inhibitors and activators 
targeting key regulatory genes, such as GLP-1, SREBP, ACC, 

Fig. 2.  Cholesterol metabolism. The process of cholesterol synthesis is complex and can be roughly divided into three stages: synthesis of IPP from acetyl-CoA, 
synthesis of squalene, and conversion of squalene to cholesterol. HMGCR and SM are the key enzymes in cholesterol synthesis. The primary route of cholesterol pro-
duction is bile acid synthesis catalyzed by CTP7A1. FXR is an important regulator of cholesterol metabolism; Its activation inhibits CTP7A1, leading to the inhibition of 
bile acid synthesis. FXR, farnesoid X receptor; CYP7A1, cholesterol 7α-hydroxylase; SM, squalene monooxygenase; HMGCR, 3-hydroxy-3-methylglutaryl (HMG)-CoA 
reductase; IPP, isopentenyl pyrophosphate; SREBP, sterol-regulatory element binding protein; PPAR, peroxisome proliferator-activated receptor; FAs, fatty acids; ACC, 
acetyl-CoA carboxylase; FASN, fatty acid synthase; ACLY, ATP citrate lyase.



Journal of Clinical and Translational Hepatology 2024 vol. 12(9)  |  815–826820

Feng X. et al: Mechanism of NAFLD

FASN, SCD1, PPARα, and FXR, has gained increasing atten-
tion in recent years. Improving the therapeutic efficacy of 
drugs and reducing their potential side effects have become 
major research goals in this field.

GLP-1 agonists: GLP-1 regulates insulin and glucagon 
secretion and modulates intestinal motility, and its agonists 
have been considered promising therapeutics in recent years 
for reducing the risk of MASLD and its associated mortality.99 
GLP-1 agonists, such as semaglutide and liraglutide, effec-
tively treat MASLD by reducing visceral and hepatic fat con-
tent.100–102 Semaglutide improves the health-related quality 
of life in patients with MASLD,103 with daily dosing proving 
more effective.104 Mechanistically, semaglutide induces mod-
ifications in the gut microbiota and ameliorates MASLD.105 
Dual GLP-1/GLP-2 receptor agonists,106 as well as dual GLP-1 
receptor/glucagon receptor agonists like ALT-801, NN1177, 
and efinopegdutide,107–109 have shown good therapeutic ef-
ficacy in MASLD. The combination of GLP-1 activators with 
other drugs is also the focus of an increasing number of 
studies. Combined treatment with semaglutide and the FXR 
agonist cilofexor, the ACC inhibitor firsocostat, and the ACLY 
inhibitor has demonstrated better therapeutic efficacy than 
monotherapy.110,111 Novel GLP-1 activators, such as cincho-
nine and exendin-4, are also under development.112,113

The findings of clinical trials on GLP-1 agonists are listed in 
Table 1.103,107,114-122 “\” indicates that no phasing information 
for the clinical trial could be found.

SREBP inhibitors: Betulin is a specific inhibitor of SREBP 
maturation. It inhibits the transport of SREBP to the Golgi 
via SCAP,52 thereby inhibiting the processes of fatty acid 
and cholesterol synthesis. Betulin has shown potential in the 
treatment of MASLD.123–126 PF-429242 is a specific inhibitor 
of the proteasome site-1 protease, which inhibits the cleav-
age and release of the SREBP precursor protein. It is also 
considered to have potential in MASLD control.127

ACC inhibitors: ACC inhibition reduces lipid accumula-
tion in hepatocytes and inhibits pro-fibrosis activity in liver 
stem cells, suggesting that small-molecule inhibitors of ACC 
can attenuate liver fibrosis by reducing hepatocyte lipotoxic-
ity and preventing liver stem cell activation. These findings 
provide a mechanistic basis for the treatment of patients with 
MASH and advanced liver fibrosis.128 However, while ACC in-
hibitors have been found to reverse MASLD, they may also 
promote hypertriglyceridemia.129 GS-0976 (Firsocostat) has 
shown promise in alleviating MASH in Phase II clinical tri-
als.130,131 However, firsocostat can cause hyperlipidemia, 
which can be alleviated by fenofibrate.132,133 The ACC inhibi-
tor ND-654, which mimics the action of ACC phosphoryla-
tion, inhibits hepatic de novo fatty acid synthesis.39 In mouse 

models, treatment with selective ACC1 inhibitors significantly 
ameliorated hepatic steatosis and liver fibrosis, supporting 
their use as new therapies for MASLD/MASH.134 Additionally, 
both the dual ACC1/ACC2 inhibitor PF-05221304135 and the 
novel ACC1/ACC2 inhibitor WZ66136 have been shown to al-
leviate MASH in mouse models.

FASN or SCD1 inhibitors: In patients with MASLD, FASN 
inhibitors such as TVB-2640 (Denifanstat)137 and FT-4101138 
reduce hepatic de novo lipogenesis and steatosis. FASstatin 
may be useful in treating MASLD by targeting and degrad-
ing FASN.139 Both the SCD1 inhibitor CAY10566 and a novel 
SCD1 inhibitor have inhibited hepatic lipid accumulation in 
mice, suggesting that SCD1 may be an effective target for 
the treatment of MASLD.140,141

PPAR agonists: Fibrates are clinically available PPARα 
agonists for MASLD treatment. The literature indicates that 
PPARα-mediated peroxisome adaptation is crucial for fenof-
ibrate-mediated improvements in MASLD.142 Combining 
PPARα with other dual-receptor agonists has shown great 
potential in MASLD treatment. The novel PPARα/γ agonists 
G4 and G5 effectively inhibited hepatic steatosis while avoid-
ing the side effects of pioglitazone.143 The PPARα/γ agonist 
aleglitazar significantly reduced hepatic steatosis and fibro-
sis.144 The PPARα/δ agonist compound H11, which exhibits 
effective and balanced PPARα/δ agonist activity, has shown 
promise in MASH treatment.145 Additionally, ZLY18, a quad-
ruple free fatty acid receptor 1 and PPARα/γ/δ agonist, might 
be a highly effective anti-MASLD drug.146

The findings of the clinical trials on PPAR agonists are list-
ed in Table 2.144,147–150 “\” indicates that no phasing informa-
tion for the clinical trial could be found.

FXR agonists: Although traditional FXR agonists have 
been used in the clinic, their side effects have limited their 
application to some extent. The traditional FXR agonist, 
obeticholic acid, has been abandoned for MASLD treat-
ment. New FXR agonists, such as nidufexor (LMB763),151 
cilofexor,152 and EDP-305,153 have entered clinical trials for 
the treatment of MASLD or MASH. In recent years, the de-
velopment of FXR agonists with stronger activity and fewer 
side effects has received increasing attention. For instance, 
1-adamantylcarbonyl-4-phenylpiperazine is an FXR agonist, 
and its derivative compound 10A was found to be more ef-
fective in ameliorating hyperlipidemia, hepatic steatosis, 
and insulin resistance.154 Additionally, structural optimiza-
tion of non-bile acid FXR agonists led to the development 
of compound 42 as an FXR agonist with high efficiency and 
selectivity for alleviating MASH.155 MET409, an FXR agonist 
with a unique chemical structure, significantly suppressed 
hepatic fat content without causing significant or severe 

Table 1.  Clinical trials of GLP-1 agonists

Drugs Conclusions Phase Refer-
ences

Dulaglutide Improvement in patients with type 2 diabetes and MASLD \ 114

Efinopegdutide Improvement of MASH and MASLD Phase II 107

Exenatide Improvement in patients with type 2 diabetes and MASLD \ 115

Liraglutide Improvement of MASH and MASLD Phase II/III 116–118

Improvement in patients with type 2 diabetes and MASLD Phase IV 119

No improvement in patients with type 2 diabetes and MASLD Phase IV 120

Semaglutide Improvement of MASH but not liver fibrosis Phase I/II 121,122

Improvement of health-related quality of life in patients with MASH and liver fibrosis Phase II 103

MASLD, metabolic dysfunction-associated steatotic liver disease; MASH, metabolic dysfunction-associated steatohepatitis.
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side effects in patients with MASH.156 Moreover, tissue-
selective FXR agonists have been studied. For example, 
(E)-3-(3-((2-cyano-4′-dimethylaminobiphenyl-4-ylmethyl)
cyclohexanecarbonylamino)-5-fluorophenyl) acrylic acid me-
thyl ester is an entero-selective FXR partial agonist that sig-
nificantly reduced the extent of liver fibrosis and decreased 
the levels of fibrosis markers and serum AST.157 BMS-986339 
exhibited potent FXR activation and anti-fibrotic efficacy de-
spite its tissue selectivity, reducing the activation of certain 

genes in the liver.158

The findings of the clinical trials on FXR agonists are listed 
in Table 3.152,156,159–162

Natural compounds: Many natural compounds, includ-
ing CPMs, are considered promising in the treatment of MA-
SLD. Recent studies on natural compounds and their molecu-
lar mechanisms are listed in Table 4.163–187 However, the use 
of many CPMs for the treatment of MASLD still needs to be 
tested in rigorous clinical trials. Nevertheless, CPMs remain 

Table 2.  Clinical trials of PPAR agonists

Drugs Targets Conclusions Phase References

Aleglitazar PPARα/γ Improvement of MASLD and liver fibrosis \ 144

Elafibranor PPARα/δ Improvement of MASH Phase II 147

Lanifibranor Pan-PPAR Improvement of MASH and liver fibrosis Phase III 148

Saroglitazar PPARα/γ Improvement of MASH and MASLD Phase II 149,150

PPAR, peroxisome proliferator-activated receptor; MASLD, metabolic dysfunction-associated steatotic liver disease; MASH, metabolic dysfunction-associated steato-
hepatitis.

Table 3.  Clinical trials of FXR agonists

Drugs Conclusions Phase Refer-
ences

Cilofexor Improvement of MASH Phase II 152,159

MET409 Improvement of MASH Phase I 156

Obeticholic acid Improvement in patients with type 2 diabetes and MASH Phase II 160

Tropifexor Improvement of MASH Phase II 161

Vonafexor Improvement of liver and kidney function in patients with MASH and liver fibrosis Phase II 162

MASH, metabolic dysfunction-associated steatohepatitis.

Table 4.  Drugs that treat MASLD by regulating lipid metabolism

Drugs Mechanism Refer-
ences

Andrographolide Inhibits FATP2 163

Baicalein Inhibits fatty acid synthesis; promotes fatty acid 
oxidation; activates AMPK; inhibits SREBP1

164,165

Berberine/oxyberberine Inhibits fatty acid synthesis; promotes fatty acid oxidation; regulates SIRT3/
AMPK/ACC; downregulates SIRT1/FoxO1/SREBP2; inhibits cholesterol synthesis

166–170

Curcumin Inhibits CD36, SLC13A5, and ACLY; regulates CYP2E1, SREBP1c, and PPARα 171–173

Extract of Dillenia indica L. Regulates SIRT1/pLKB1/AMPK, HMGCR, and PPARα signaling pathways 174

Extract of Liriope platyphylla Inhibits fatty acid uptake and synthesis 175

Extract of root from 
Arctium lappa L.

Activates AMPK/ACC/CPT1 176

Jian Pi Qing Gan Yin decoction Activates AMPK/PPARα; inhibits LXRα/SREBP1/NF-κB 177

Kangtaizhi Granule Regulates PPARγ, SREBP1, pAKT, FAS, and SIRT1 178

Limonin AMPK agonist; downregulates FASN and SREBP1 179,180

Naringenin Activates the CaMKKβ/AMPK/ACC pathway 181

Paeoniflorin Activates LKB1/AMPK and PPARα 182,183

Puerarin Inhibits fatty acid uptake and synthesis; promotes fatty acid 
oxidation; inhibits FASN, SREBP1c; activates AMPK

184,185

Saikosaponin Inhibits SREBP1c; activates PPARα; inhibits FASN; promotes ACOX1 and CPT1 186,187

FATP, fatty acid transport protein; AMPK, AMP-activated protein kinase; SREBP, sterol regulatory element-binding protein; ACC, acetyl-CoA carboxylase; ACLY, ATP 
citrate lyase; PPAR, peroxisome proliferator-activated receptor; HMGCR, 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase; CPT1, carnitine palmitoyltransferase-1; 
FASN, fatty acid synthase.
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a valuable resource in modern medicine and have significant 
potential for the future treatment of MASLD.

Discussion
MASLD represents a continuum of liver diseases that includes 
simple steatosis and metabolic dysfunction-associated stea-
tohepatitis. The global prevalence of MASLD is estimated to 
be as high as 29.8%, making it one of the most significant 
diseases. Most patients with MASLD are asymptomatic and 
only present with incidental findings of hepatomegaly or 
slight-to-moderate increases in ALT and AST levels during 
routine physical examinations. The current primary approach 
for treating MASLD is reducing hepatic steatosis by regulat-
ing lipid metabolism. Dietary control and appropriate exer-
cise can significantly improve the symptoms of MASLD. Ad-
ditionally, drugs such as FXR agonists, PPARα agonists, and 
SREBP1 inhibitors have been explored for MASLD treatment 
because of their ability to regulate lipid metabolism.

The pathology of MASLD is characterized by hepatic stea-
tosis, the development of which is mainly related to dysregu-
lated hepatic lipid metabolism. The development of MASLD is 
generally attributed to six factors: increased hepatic fatty acid 
uptake and synthesis, decreased fat oxidation, increased cho-
lesterol uptake and synthesis, and increased bile acid synthe-
sis. (1) Regarding increased fatty acid uptake, FATP and CD36 
are upregulated in MASLD. Although CAV-1 is involved in fat 
uptake, its role in MASLD remains controversial. (2) Concern-
ing increased de novo lipogenesis, ACLY, ACSS, ACC, FASN, 
and SCD, key enzymes involved in de novo fatty acid syn-
thesis, are upregulated in MASLD. Among them, SREBP1 can 
sense cholesterol levels and affect MASLD by transcription-
ally regulating key genes involved in hepatic lipid metabolism. 
SREBP1 induces ACC, FASN, SCD, and other lipid synthesis 
genes to promote hepatic fatty acid and triglyceride synthe-
sis. SREBP1 has been considered to have great potential as a 
treatment target for MASLD. (3) Inhibition of fatty acid oxida-
tion can also lead to MASLD. Inhibition of ACSL and CPT-1, 
key enzymes in lipolysis, can exacerbate hepatic steatosis. 
Fatty acid oxidation can be regulated by PPARα, and PPARα 
activation promotes CPT1 expression, thereby enhancing 
fatty acid β-oxidation. Dysregulated cholesterol metabolism 
is also involved in the development of MASLD. (4) Increased 
cholesterol uptake can exacerbate MASLD through increased 
NPC1L1 expression. (5) Regarding increased cholesterol syn-
thesis, HMGCR, a key enzyme for cholesterol synthesis, is 
upregulated in MASLD. SM has also been found to play an im-
portant role in the progression of MASLD to HCC. (6) Finally, 
increased bile acid synthesis is involved in the development of 
MASLD. CYP7A1, a key enzyme involved in bile acid synthe-
sis, has elevated expression in MASLD. Hepatic bile acid syn-
thesis is mainly regulated by FXR, and FXR activation inhibits 
de novo bile acid synthesis, thereby ameliorating MASLD.

Conclusions
Although much research has investigated the mechanisms of 
MASLD development, some unanswered questions remain. 
Peroxisomes are involved in the β-oxidation of extra-long-
chain fatty acids, but little research has assessed the con-
nection between peroxisomes and MASLD. Current models 
of MASLD are mainly based on oleic acid-induced cells and 
high-fat diet-fed mice, which do not fully capture the dynam-
ic process of MASH fibrosis that can progress to cirrhosis and 
HCC. Thus, the need for novel, low-cost, and rapid MASLD 
models for life science research is evident. Despite numer-
ous new drugs, including molecule drugs and CPMs, enter-

ing clinical trials in recent years, the treatment of MASLD 
remains ineffective given the large MASLD population. Lipid 
metabolism, as an important mechanism in the development 
of MASLD, has been the primary focus of MASLD treatment. 
Therefore, the exploration of new drugs and targets that reg-
ulate lipid metabolism for MASLD treatment is an area that 
requires in-depth research.
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